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a b s t r a c t

Comparisons of within and between estimators using the conventional Hausman test may be subject to
statistical problems if the within variation is not sufficiently large. Adopting an alternative asymptotic
approximation, we propose a modification of Hausman test that is valid whether the within variation is
small or large.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

With the advent of many panel data sets, researchers are
commonly estimating a textbook panel datamodel with individual
effects

yit = αi + x′

itβ + εit .

In carrying out the estimation, the primary concern of many
researchers is whether αi can be treated as uncorrelated with
xit . As is well known, random effects estimation will produce an
efficiency gain over fixed effects estimation if αi is uncorrelated
with xit ; however, if this condition does not hold, only fixed effects
estimation will produce consistent estimates. Hausman (1978)
provided a test of random effects versus fixed effects which in
principle resolves the dilemma for researchers. However, if the
within variation is small, the fixed effect estimates may not be
asymptotically normal, potentially invalidating the basic premise
of the Hausman test. This problem often arises in empirical work,
and when the within variation is likely to be small, researchers
almost always use the random effects specification without using
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the Hausman test as a diagnostic,3 perhaps because they are
concerned that itmaynot be appropriate in their case. In this paper,
we first show that this intuition is theoretically valid in the sense
that it is not appropriate to use the conventional Hausman test
when some or all of the explanatory variables have little within-
person variation. Next, we provide a valid version of the Hausman
test of between versus fixed effects for this case. Finally, we show
that a version of the bootstrap in fact provides a valid critical value
for this test.

2. Conventional comparison of between and within estimators

We consider a textbook panel data model with fixed effects
yit = αi + x′

itβ + εit ,

where the x’s are time varying strictly exogenous regressors,
i.e., (xi1, . . . , xiT ) is independent of (εi1, . . . , εiT ). For simplicity,
throughout the paper we assume that εit are i.i.d. over i and t and
the individual effect parameter is specified to be
αi = c + x′

iγ + ui,

where xi =
1
T

∑T
t=1 xit and ui is independent of (xi1, . . . , xiT ) and

(εi1, . . . , εiT ). The ‘between’ and ‘within’ models are

yi = αi + x′

iβ + εi and (1)yit =x′

itβ +εit ,
3 See, e.g., Kearney (2005), Sawangfa (2007) and Ham et al. (forthcoming).
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where yi =
1
T

∑T
t=1 yit ,yit = yit − yi, etc. In other words, the

between model assumes that
H0 : γ = 0. (2)

Thewithin estimator isβ =

∑N
i=1
∑T

t=1xitx′

it

−1∑N
i=1
∑T

t=1xityit and the between estimator is β =

∑N
i=1(xi − x)


xi −

x
′−1∑N

i=1(xi − x)(yi − y)

, where x =

1
N

∑N
i=1 xi and y =

1
N

∑N
i=1 yi. As noted byHausman (1978), the comparison of random

and fixed effect estimators under conventional asymptotics
is equivalent to the comparison of the between and within
estimators. Letting βB = plimβ = β + γ , it is typically shown
that[√

N(β − β)
√
N(β − βB)

]
⇒ N

[
0
0

]
,

[
Ωβ 0
0 Ωβ

]
for someΩβ andΩβ . Then the well-known Hausman test statistic
is

N(β − β)′[Ωβ + Ωβ ]
−1(β − β), (3)

where Ωβ and Ωβ are some consistent estimators of their respec-
tive population counterparts. Based on the asymptotic normality of
(
√
N(β−β),

√
N(β−βB)), the asymptotic distribution of the test

statistic under the null is understood to be χ2
dim(β); see Hausman

and Taylor (1981).

3. A potential problem with conventional procedure

Implicit in the conventional Hausman test is the assumption
that both

√
N(β − β) and

√
N(β − βB) are asymptotically normal,

which in turn requires that bothxit and xi have sufficient variation.
Although the between variation (i.e.,

∑N
i=1(xi − x)(xi − x)′) is

typically large, the within variation (i.e.,
∑N

i=1
∑T

t=1xitx′

it ) tends to
be small in many applications. As a consequence, the asymptotic
normality of

√
N(β − β) may be a dubious assumption, and the

conventional test may not be reliable.
To take an extreme example, suppose that T = 2 and xit is either

zero or one. Write N = n + m, and suppose that xi1 < xi2 for
i = 1, . . . ,m and xi1 = xi2 for i = m + 1, . . . , n + m. It is well
known that the within estimator can be written as

β =

N∑
i=1
(xi2 − xi1)(yi2 − yi1)

N∑
i=1
(xi2 − xi1)2

when T = 2. Now because xi2 − xi1 = 0 for i = n + 1, . . . , n + m
and xi2 − xi1 = 1 for i = 1, . . . ,m, we can see that the within
estimator isβ =

1
m

m−
i=1

(yi2 − yi1).

If m is so small that a sensible asymptotic approximation requires
that n → ∞ with m fixed, then the central limit theorem
is no longer applicable, and we cannot approximate the within
estimator by a normal distribution.4

Note that this corresponds to the case where conventional
researchers’ intuition leads them to forgo the standard Hausman
tests if the fixed effect estimates are very noisy.

4. A bootstrap-like solution

Consider the moment condition

4 We discuss this problem further in our Online Appendix Hahn et al. (2010).
E


T−

t=1

xit(yit −x′

itβB)


= 0, (4)

where βB = plimβ is a solution to the moment equation E[xi{yi −
E[yi] − (xi − E[xi])′b}] = 0. It well known that testing for the null
hypothesis (2) in model (1) is equivalent to testing for themoment
condition (4).

Define

Σx =
1
N

N−
i=1

T−
t=1

xitx′

it ,
Σx =

1
N

N−
i=1

(xi − x)(xi − x)′,

σ 2
ε =

1
N(T − 1)

N−
i=1

e ′

i
ei, and

Ωβ =


1
N

N−
i=1

(xi − x)(xi − x)′
−1 

1
N

N−
i=1

f 2i

,

whereei andfi are defined below in Eqs. (5) and (6). The matricesΣx, and Ωβ are, respectively, estimates of Σx and the asymptotic
variance of

√
N(β − βB),Ωβ , where

Ωβ ≡


plim N→∞

1
N

N−
i=1

(xi − x)(xi − x)′
−1

×


plim N→∞

1
N

N−
i=1

((yi − y)− (xi − x)′βB)
2


.

A natural statistic for the moment condition (4) is

H =


1

√
N

N−
i=1

T−
t=1

xit(yit −x ′

itβ)

′

× [σ 2
ε
Σx + ΣxΩβ

Σx]−1


1

√
N

N−
i=1

T−
t=1

xit(yit −x ′

itβ)


.

In fact, it is easy to see that when Ωβ = σ 2
ε
Σ−1x , the test statistic

H is equivalent to the conventional Hausman test statistic in (3).
In what follows we propose a resampling procedure that ap-

proximates the distribution of H even under ‘‘weak within varia-
tion.’’ (See the next section for rigorous definition on ‘‘weak within
variation’’.)

1. Computeei =yi −xiβ − (y −xβ) (5)fi = yi − x ′

i β − (y − x ′β). (6)

(Note that we are de-meaning the residuals.)
2. From the empirical distribution FN of the sample {(ei,fi)}, gen-

erate a random sample {(e∗

i , f
∗

i )}.
3. Let

H∗
=


1

√
N

N−
i=1

T−
t=1

xite∗

it − ΣxΣ−1
x


1

√
N

N−
i=1

(xi − x)f ∗

i

′

× [σ 2
ε
Σx + ΣxΩβ

Σx]−1.


1

√
N

N−
i=1

T−
t=1

xite∗

it

− ΣxΣ−1
x


1

√
N

N−
i=1

(xi − x)f ∗

i


.

4. Repeat 2 and 3 many times and tabulate the distribution of H∗.
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5. Asymptotic theory

We now consider the validity of our procedure under the
alternative asymptotics that reflect the small within variation in
many applications.We allow for the possibility that components of∑N

i=1
∑T

t=1xitx′

it may have different rates of convergence. In order
to express this idea, we will let δk denote the rate of convergence
of the (k, k) element of

∑N
i=1
∑T

t=1xitx′

it , i.e., we will assume that

1
Nδk

N−
i=1

T−
t=1

x2k,it (7)

is stochastically bounded. Write ∆n = diag(N−(1−δ1)/2, . . . ,

N−(1−δdim(β))/2). We note that 1
Nδk

∑N
i=1
∑T

t=1x2k,it can be under-
stood to be the (k, k) element of

Λ̂ = ∆−1
n
Σx∆−1

n

= diag(N−δ1/2, . . . ,N−δdim(β)/2)

×


N−
i=1

T−
t=1

xitx′

it


diag(N−δ1/2, . . . ,N−δdim(β)/2).

Below we assume that Λ̂ has a well-defined limit Λ. Let ∆ =

limn∆n.
Condition 1 elaborates on the boundedness condition (7), and

imposes other regularity conditions:

Condition 1. (a) εit are i.i.d. over i and t; (b) E[εit ] = 0 and
E[|εit |

8
] < ∞; (c) ui is independent of (εi1, . . . , εiT ); (d) E[ui] = 0

and E[|ui|
8
] < ∞; (e) (xi1, . . . , xiT ) is a nonstochastic triangular

array; (f) 1
N

∑
i xix

′

i and
1
N

∑
i(xi − x)(xi − x)′ converge to positive

definite limits; (g) lim sup 1
N

∑
i ‖xi‖

8 < ∞; (h) 0 ≤ δk ≤ 1 for all
k = 1, . . . , dim(β), and lim Λ̂ = Λ, where Λ is a positive definite
matrix; (i) σ 2

εΛ+Λ∆Ωβ∆Λ is invertible.

Let L0N denote the distribution of H under the null. Also, let L∗

N
denote the (conditional) distribution of H∗ (conditioning on the
samples). Then, we show that the distribution of H∗ is close to
the distribution of H under the null hypothesis (2). This is done
by showing that ρ(L0N , L

∗

N) converges to zero in probability, where
ρ(·, ·) denotes the Prohorov metric.5

Theorem 1. Under Condition 1, ρ(L0N , L
∗

N) = op(1).

Proof. In Appendix. �

Theorem 1 establishes that our bootstrap based procedure L∗

approximates the L0 asymptotically, whether the null is correct or
not. The approximation does not require that the within variation
is large, as is typically assumed in conventional asymptotics.
Theorem 1 is valid even when the within variation is so small that∑N

i=1
∑T

t=1x2k,it is fixed as N → ∞. (Condition 1(h) allows the
possibility that δk = 0.) On the other hand, Theorem 1 is valid
when the within variation is large. (Condition 1(h) also allows the
possibility that δk = 1.) Therefore, our bootstrap-like procedure is
robust to the degree of within variation, unlike the conventional
comparison of the within and between estimators discussed in
Section 3.

5 The definition of the Prohorov metric is provided in the Online Appendix
of Hahn et al. (2010). The Prohorov metric metrizes weak convergence on any
separable metric space such as Euclidean space. See, e.g., Dudley (1989, Theorem
11.3.3).
Appendix. Proof of Theorem 1

Let Γp = Γp(B) be the set of probabilities ν on a Borel σ -field of
B such that


‖z‖pν(dz) < ∞. For ν, ν∗

∈ Γp, let dp(ν, ν∗) be the
infimumof E{‖Z−Z∗

‖
p
}
1/p over pairs ofB-valued randomvariables

Z and Z∗, such that Z ∼ ν and Z∗
∼ ν∗. By Lemma 8.1 of Bickel and

Freedman (1981), the infimum is attained and dp is a metric on Γp.
Writexi = (xi1, . . . ,xiT )′ andεi = (εi1, . . . ,εiT )′.

We begin with a few lemmas. Proofs of Lemmas 1–3 are
available in our Online Appendix (Hahn et al., 2010).

Lemma 1. Under Condition1, (a) (β−β)′


1
N

∑N
i=1x ′

ixi (β−β) =

oa.s(1), and (b) (β − βB)
′


1
N

∑N
i=1(xi − x)(xi − x)′


(β − βB) =

oa.s(1).

Lemma 2. Under Condition 1, σ 2
ε =

1
N(T−1)

∑N
i=1
e ′

i
ei = σ 2

ε +

oa.s(1).

Lemma 3. Under Condition 1, Ωβ = Ωβ + oa.s.(1).

Lemma 4. Let ψ1 ≡ ∆−1
n


1

√
N

∑N
i=1
∑T

t=1xitεit , ψ∗

1 ≡

∆−1
n


1

√
N

∑N
i=1
∑T

t=1xite∗

it


, ψ2 ≡

1
√
N

∑N
i=1(xi − x)ζi, and ψ∗

2 ≡

1
√
N

∑N
i=1(xi − x)f ∗

i , where ζi ≡ ui + εi. Also let ψ = (ψ ′

1, ψ
′

2)
′ and

likewise for ψ∗. Suppose that Condition 1 holds. Then, d2(ψ,ψ∗) =

oa.s.(1).

Proof. Notice that

d2(ψ,ψ∗)2 = d2



∆−1

n
1

√
N

N−
i=1

x ′

iεi
1

√
N

N−
i=1

(xi − x)ζi

 ,

∆−1

n
1

√
N

N−
i=1

x ′

ie∗

i

1
√
N

N−
i=1

(xi − x)f ∗

i




2

≤

N−
i=1

d2


∆−1

n
1

√
N
x ′

iεi
1

√
N
(xi − x)ζi

 ,
∆−1

n
1

√
N
x ′

ie∗

i

1
√
N
(xi − x)f ∗

i




2

by Bickel and Freedman (1981, Lemma 8.7). Denote ξi = (ε′

i, ζ
′

i )
′

andξ ∗

i = (e∗′

i , f
∗′

i )
′. Use Eqs. (8.2) and (8.3) of Bickel and Freedman

(1981) and bound the RHS by

N−
i=1

∆−1
n

1
√
N
x′

i

2 +

 1
√
N
(xi − x)

2

d2

ξi,ξ ∗

i

2
=


trace


∆−1

n
1
N

N−
i=1

x ′

ixi∆−1
n



+ trace


1
N

N−
i=1

(xi − x)(xi − x)′


· d2(ξi,ξ ∗

i )
2

= O(1)d2(ξi,ξ ∗

i )
2,
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where the first equality holds since (ξi,ξ ∗

i ) are identically dis-
tributed and the second equality holds by Condition 1(h). For the
required result, it remains to prove that d2(ξi,ξ ∗

i ) = oa.s.(1). Let
{ξ ∗

i }i=1,...,N denote the i.i.d. samples from the empirical distribu-
tion of {ξi}i=1,...,N . Then, by the triangle inequality, d2(ξi,ξ ∗

i ) ≤

d2(ξi, ξ ∗

i ) + d2(ξ ∗

i ,
ξ ∗

i ). By Lemma 8.4 of Bickel and Freedman
(1981), d2(ξi, ξ ∗

i ) = oa.s.(1). Next, we apply Lemma 8.8 of Bickel
and Freedman (1981) twice to obtain

d2(ξ ∗

i ,
ξ ∗

i )
2

= d2(ξ ∗

i − ξ,ξ ∗

i )
2
+ ‖ξ‖2

= d2


ξ ∗

i ,
ξ ∗

i +

[y −xβ
y − x ′β

]2

−

ξ −

[y −xβ
y − x ′β

]2 + ‖ξ‖2

= d2


ξ ∗

i ,
ξ ∗

i +

[y −xβ
y − x ′β

]2

−

[εζ
]

−

[y −xβ
y − x ′β

]2 + ‖ξ‖2.

By definition

d2


ξ ∗

i ,
ξ ∗

i +

[y −xβ
y − x ′β

]2

≤
1
N

N−
i=1

[εi −yi +xiβζi − yi + x ′

i
β
]2

= (β − β)′


1
N

N−
i=1

x ′

ixi

(β − β)+ (β − βB)

′

×


1
N

N−
i=1

xix′

i


(β − βB) = oa.s.(1),

where the last equality is based on Lemma 1. Also,

‖ε −y +x ′β‖
2

≤
1
N

N−
i=1

‖εi −yi +xiβ‖
2

(by the Cauchy–Schwarz inequality)

=
1
N

N−
i=1

‖xi(β − β)‖2
= oa.s.(1),

and likewise, ‖ζ − y + x′β‖ = oa.s.(1). Finally, ‖ξ‖2
= 1

N

∑N
i=1 ξi

2 = oa.s.(1) by SLLN. Therefore, we deduce d2(ξ ∗

i ,ξ ∗

i ) = oa.s.(1), and d2(ψ,ψ∗) = oa.s.(1), as required. �

Proof of Theorem 1. The ‘denominator’ of H can be rewritten asσ 2
ε
Σx + ΣxΩβ

Σx = ∆n(σ 2
ε
Λ + Λ∆nΩβ∆nΛ)∆n. By Lemmas 2

and 3, and Condition 1(h), we have

σ 2
ε
Λ+ Λ∆nΩβ∆nΛ = σ 2

εΛ+Λ∆Ωβ∆Λ+ oa.s.(1), (8)

where ∆ ≡ lim∆n. By definition Σx =
1
N

∑N
i=1
∑T

t=1xitx′

it =

∆nΛ∆n. Let Hnull = Ψ ′(σ 2
ε
Λ+ Λ∆nΩβ∆nΛ)−1Ψ , where

Ψ ≡ ∆−1
n


1

√
N

N−
i=1

T−
t=1

xitεit− ΣxΣ−1
x


1

√
N

N−
i=1

xiζi



= ∆−1
n


1

√
N

N−
i=1

T−
t=1

xitεit− Λ∆nΣ−1
x


1

√
N

N−
i=1

xiζi


= ψ1 − Λ∆nΣ−1

x ψ2.
Note that the distribution of Hnull is equal to the null distribution
L0N of H . Also, write H∗

= (Ψ ∗)′(σ 2
ε
Λ+Λ∆nΩβ∆nΛ)−1Ψ ∗, where

Ψ ∗
≡ ∆−1

n


1

√
N

N−
i=1

T−
t=1

xite∗

it − ΣxΣ−1
x


1

√
N

N−
i=1

(xi − x)f ∗

i



= ∆−1
n


1

√
N

N−
i=1

T−
t=1

xite∗

it



−Λ∆nΣ−1
x g


1

√
N

N−
i=1

(xi − x)f ∗

i


= ψ∗

1 − Λ∆nΣ−1
x ψ∗

2 .

Note that the (conditional) distribution of H∗ (conditioning on the
sample observations) is equal to L∗

N .
Denote ZN to be the samples. Denote P∗(·|ZN) to be the boot-

strap distribution of H∗ given samples ZN (this is the law L∗

N ). For
every continuity point t , we will show that

P∗(H∗
≤ t|ZN) = P(Hnull ≤ t)+ op(1). (9)

Define ρ(P,Q ) = inf{ε > 0 : P(A) ≤ Q (Aε) +

ε for all Borel sets A}, where Q (Aε) denotes the ε-inflated set of A
(see page 309 of Dudley (1989)). For (9), it suffices to show6 that
ρ(L0N , L

∗

N) = op(1), for which it is enough to show that for every
subsequence ρ(L0N(n

′), L∗

N(n
′)), there exists a further subsequence

ρ(L0N(n
′′), L∗

N(n
′′)) such that ρ(L0N(n

′′), L∗

N(n
′′)) = oa.s.(1). (See The-

orem 9.2.1 of Dudley (1989).)
Notice that ψ = (ψ1, ψ2) = Op(1). Then, given any subse-

quence n′, we can find a further subsequence n′′ such thatψ(n′′) =

(ψ1(n′′), ψ2(n′′)) ⇒ ψ = (ψ1, ψ2), where the limit may depend
on n′. We denote this limit by ψ(n′). By Lemma 4, we have

d2(ψ(n′′), ψ∗(n′′)) = oa.s.(1) (10)

along the subsubsequence n′′.
Also, notice by definition that

ψ(n′′) ⇒ ψ(n′). (11)

Furthermore, under Condition 1 it is easy to show that {‖ψ(n′′)‖2
}

is uniformly integrable, which yields togetherwith (11) the second
moment convergence. Then, by Lemma 8.3 of Bickel and Freedman
(1981), we have

d2(ψ(n′′), ψ(n′)) = o(1). (12)

Since d2(ψ∗(n′′), ψ(n′)) ≤ d2(ψ(n′′), ψ∗(n′′))+d2(ψ(n′′), ψ(n′)),
from (10) and (12), we deduce d2(ψ∗(n′′), ψ(n′)) = oa.s.(1). Then,
by Lemma 8.3 of Bickel and Freedman (1981) we have ψ∗(n′′) ⇒

ψ(n′). Denote Ψ (n′) = ψ1(n′)−Λ∆nΣ
−1
x ψ2(n′). We now use (8)

and the continuous mapping theorem to deduce that

Hnull = Ψ ′(σ 2
ε
Λ+ Λ∆nΩβ∆nΛ)−1Ψ

⇒ Ψ (n′)′(σ 2
εΛ+Λ∆Ωβ∆Λ)

−1Ψ (n′) = L(n′), say

along the subsubsequence n′′. Similarly, we can show that H∗
⇒

L(n′) a.s. along the subsubsequencen′′. Then, by Theorem11.3.3. of
Dudley (1989), since Hnull ⇒ L(n′) implies ρ(Hnull,L(n′)) = o(1)
and H∗

⇒ L(n′) a.s. implies ρ(H∗,L(n′)) = oa.s.(1) along the
subsubsequence n′′ and we can claim that

ρ(L0N(n
′′), L∗

N(n
′′)) ≤ ρ(L0N(n

′′),L(n′))+ ρ(L(n′), L∗

N(n
′′))

= oa.s(1),

as required. �

6 We can show the result by modifying the proof of Theorem 11.3.3 of Dudley
(1989), Part (d) ⇒ (a).
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